(1753) A véletlenszerű valóság

Tibor bá’ online

 

~q191Egy felbukkanó új elmélet szerint, melynek célja a valóság megfogása, a tér és az anyag pusztán „zajból” lett teremtve. (Ha az egészből egy büdös szót se értesz, ne lepődj meg, és ne legyen kisebbségi érzésed se, nekem például fingom sincs, hogy fordítottam le)  😀

Ha a valóságot eltakaró fátyol egyik csücskét fel tudnánk emelni, mit láthatnánk alatta? Semmi mást, mint véletlenszerűséget, állítja a két ausztrál tudós, Reginald Cahill és Christopher Klinger (Az Adalaidei – Ausztrália – Fliders Egyetem tanárai)  mivel a minket körülvevő tér és idő, és minden anyag nem több, mint a véletlenszerűség mély tengerén úszó hab.

Talán nem kellene meglepődnünk, hogy a véletlenszerűség a világmindenség része. Végül is a fizikusok úgy tartják, hogy az üres térben a virtuális részecskék zavaros nyüzsgése folyik. A véletlennek pedig jelentős szerepe van a kvantum­mechanikában, ahol például az elektron megfigyelésének az eredménye nem más, mint az egyenlet által előre jelzett tulajdonságok közül valamelyiknek a véletlenszerű megjelenése.

Viszont Cahill és Klinger úgy gondolják, hogy a véletlenszerűség ennél jóval mélyebb, jóval fundamentálisabb. „Pusztán a kvantummérésekhez való kapcsolódáson túlmenően, ez a véletlenszerűség a valóság tényleges lényege”, nyilatkozott Cahill. Ha a két tudósnak igaza van, akkor megteremtették valamennyi fizikai elmélet közül a legalapvetőbbet, aminek következményei megdöbbentőek. „A véletlen­szerű­ségből származik minden”, állítja Cahill, „még a jelen érzékelése is, ami napjaink fizikai szemléletéből oly nyilvánvalóan hiányzik.”

Meglepő módon a két tudós bizonyítása az elméleti matematikából származik. Még 1930-ban az osztrák származású Kurt Gödel – aki diszciplínává módosította a logikus érvelést – elméletének publikálása megdöbbentette a világ matematikusait, mert lényegében bebizonyította, hogy ha egy matematikai rendszer teljes, akkor nem ellentmondás mentes, ha pedig ellentmondás mentes, akkor nem teljes. Vegyünk egy példát! Az ó-kori görögök néhány olyan axióma segítségével alkották meg a geometriát, mint például a „két pontot csak egyetlen egyenes köthet össze”. Úgy tűnt (és így is tanultuk, én legalább is), hogy ha egy matematikus elég ügyes, akkor bármely teoréma (tantétel) igaz vagy hamis voltát le tudja vezetni axiómákból.

Gödel azonban kimutatta, vannak olyan tantételek, amelyek igaz vagy hamis volta nem vezethetők le axiómákból. Egyszerűbben megfogalmazva, a matematikai igazságok legnagyobb része nem bizonyítható. Ez természetesen bombaként hatott a matematikán kívül is. Elvégre a fizikai törvények a matematika segítségével vannak megfogalmazva, azaz Gödel tételének implikációja szerint a Világmindenséget nem lehet úgy leírni matematikai eszközökkel, hogy abból valamennyi fizikai igazság kiolvasható legyen. Ennek ellenére a fizikusok többnyire figyelmen kívül hagyták Gödel tételét, aminek oka elsősorban az elmélet elvontsága volt, különben is úgy tűnt, közvetlenül nem kapcsolódik a fizikához.

Csakhogy a múlt század nyolcvanas éveiben Gregory Chaitin (az IMB kutatója) és Thomas J. Watson (A New Yorki Yorktown Kutatóközpont munkatársa) Gödel munkáit kiszélesítették. Szerintük Gödel igazsága egy véletlenszerű igazság. Mit jelent ez? A matematikusok megfogalmazása szerint véletlen­szerű szám az, amelyik kiszámíthatatlan. Más szavakkal nem állítható elő olyan algoritmussal, vagy utasítások illetve szabályok sokaságával, (mint például egy számítógép program) melyek rövidebbek, mint az előállított szám. Chaitin szerint a véletlenszerű igazság egy adott rendszer axiómáiból nem vezethető le. Egy véletlenszerű igazságnak nincs magyarázata, egyszerűen csak van.

Chaitin kimutatta, hogy az ilyen igazságok széles áradatában az igaz tantételek szigetként állnak ki. Ezek közül bármelyikbe véletlenül bele lehet botlani (olyan tulajdonságokkal bíró egyenletet véletlenül fel lehet fedezni, ami axiómákból nem vezethető le), de egyik sem bizonyítható. Ennek hátborzongató következménye, hogy az elméleti matematika a véletlenszerűségre épül.

Most jön be a fizika! A Világmindenség önigazoló. Például: tisztában vagyok önmagammal. Ezt azt sugallja, hogy a fizikai valóság mindennapi igazságai, mint például a matematikai igazságok nagy része, nem rendelkeznek magyarázattal, ami azért van, mert a valóság a véletlenszerűségre épül. A kutatók véleménye szerint a véletlenszerűség alapvetőbb a létező tárgyaknál. (Na ezt kapd ki!)

A hagyományos fizika magját képező elképzelés szerint vannak tárgyak, amelyek valóságosak, még akkor is, ha nem lépnek kölcsönhatásba más tárgyakkal. A fizikusok még mielőtt leírják azokat az egyenleteket, melyek meghatározzák, hogy a tér, az elektronok, a mágneses mezők, stb. hogyan viselkednek, feltételezik, hogy ezek a dolgok léteznek. Sokkal kielégítőbb lenne, ha ezekhez a feltételezésekhez nem ragaszkodnának. (OK, csak az én létemet ne kérdőjelezzék meg. 😀 )

Ezt már Gottfried Leibniz német matematikus is felfedezte még a XVI. században. Leibniz feltételezte, hogy a valóság monadokból (A monad Leibniz filozófiája szerint egy oszthatatlan, vagyis egyszerű lényeg illetve valóság, mint például egy atom, vagy egy személy) tevődik össze, amiknek létezése kizárólag egymáshoz való viszonyuktól függ. Ez az elképzelés azonban a tudomány hátterében maradt, mivel figyelembevétele mellett elképesztően nehéz lett volna a dolgok kiszámítása, éles ellentétben Newton mechanikájával.

Azonban Cahil és Klinger megtalálták a módját a kalkulációnak. Leibniz monad-jához hasonlóan az általuk elkeresztel „látszólagos-tárgyaknak”(Pszeudo-objektum) nincs belső létük, meghatározásuk kizárólag azon múlik, milyen mértékben kapcsolódnak egymáshoz, és végső fokon eltűnnek a modellből, mert mindössze egy kitölthető vázat alkotnak.

A recept egyszerű: végy néhány látszólagos-tárgyat, adj hozzá némi véletlenszerűséget, tedd be egy számítógépbe és hagyd, hogy kifejlődjön. Az 1., 2., 3., … látszólagos-tárgyak segítségével meghatározható néhány szám, melyek képviselhetik minden látszólagos-tárgyból álló pár összekapcsoló erejét. Tehát B12 az 1 és 2 közti kapcsolat erejét adja meg. B13 pedig az 1 és 3 közöttit és így tovább. Ezek egy kétdimenziós számrácsot alkotnak, vagyis egy mátrixot.

A fizikusok a mátrixeiket feltöltik a nullához közel álló számokkal, majd ismételten betáplálják egy mátrixegyenletbe, ami véletlenszerű zajt, és nem-lineáris, az eredeti mátrix fordítottját adja hozzá. A véletlenszerűség azt jelenti, hogy ezen modell igazságait vagy előrejelzéseit nem okozza semmi. Ez nem más, mint Chaitin matematikai eredményének fizikai változata. Ez a mátrixegyenlet többnyire egy értelmes spekuláció újszülöttje, de ilyen feltételezésekre létezik használható precedens. Példának okáért 1932-ben egy mátrixegyenlet láttán Paul Dirac rájött az elektronok viselkedésére és a végén felfedezte az antianyagot és kapott érte egy Nobel-díjat.

Az eredeti feltételezésből még számtalan dolog adódik, de mit szólnak ehhez a többi fizikusok? Roy Frieden (Az University of Arizona fizikusa) szerint „Ez egy abszolút alapvető kutatás, amihez hasonlóról még nem hallottam. Egyetértek annak a feltételezésével, hogy végső fokon minden véletlenszerű, de a részletekkel kapcsolatban szkeptikus vagyok.”

Steven Weinberg (University of Texas) úgy gondolja, hogy „Itt egy végtelen visszafejtéssel állunk szemben, mert a kiindulást adó látszólagos-tárgy semmivel se fogható fel többnek, mint egymáshoz gyengén kötődő látszólagos-tárgyak és ez így megy tovább a végtelenségig. Viszont nem lehet kitalálni olyan kísérletet, ami ezt a felépítést bizonyítani tudná. Vagyis ott vagyunk, ahol a part szakad.”

John Baez (University of California) szerint „Jól elvetették a sulykot. Komolyan meglepne, bár el tudna kápráztatni, ha elképzelésük bizonyossá válna.”

Ami mégis figyelemre méltó, hogy Cahill és Klinger elsőnek hoztak létre egy olyan fizikai rátekintést a valóságra, ami figyelembe veszi a logika Gödel, majd Chaitin  által felfedezett alapvető lehatároltságát, végső fokon előre jelezve olyasmit, ami nagymértékben hasonlít világunkra.

____________________________________________________________
____________________________________________________________
____________________________________________________________

11 gondolat erről: „(1753) A véletlenszerű valóság

  1. Minden eddigi valóságos kísérlet, megfigyelés azt mutatta, hogy az anyag és az energia világa, teljesen pontosan meghatározott törvényszerűségek mentén működik…..
    A véletlen olyan esemény amelyet nem számítottunk ki előre. Tudásunk fogyatékossága, vagy kapacitás hiány miatt.

  2. a közgazdaság ezt a teóriát vigan alkalmazza, akár hivatalos bizonyitás nélkül is 🙂
    alkoss egy keretrendszert a semmiből, töltsd fel tartalommal (pénzzel), engedd ki a környezetbe, a világba, majd amikor visszatér a rendszerbe, úgy eltűnik mintha sosem lett volna, ám közben a feladatát teljesitette , és átcsoportositotta a vagyont. persze ilyenkor felmerül némi átmeneti kölcsönhatás, ám az eredők összege zéró a végelszámolásban. ami plusszként jelentkezik, az „külső anyag” :-))

  3. Ez az egész hülyeség, mert mi Tibor bá’-tól tudjuk, hogy véletlen igazából nincs is. 😛

  4. 2. Létezünk ebben a világban, tapasztalunk, és azt tapasztaljuk, hogy a dolgok és események bizonyos rendezettséget mutatnak. Ez a rendezettség már őseinknek is feltűnt több ezer éve, azóta kutatja az ember a világot rendező törvényeket. Elég sokat találtunk is, amibe szépen bele tudunk gyömöszölni sokmindent. És mivel a rendezettséget szeretjük, abban érezzük biztonságban magunkat, szeretjük figyelmen kívül hagyni a véletlenszerűség, rendezetlenség tömegét, amibe ez a rend ágyazódik, mint a valós számok közé a racionálisak.

    A tudomány a rendezettség vizsgálatára lett kialakítva, a rendezetlenségről tudomást sem vesz. Nem csoda, hogy ha csak ezt szemléljük, úgy tűnik, mintha csak rend lenne a világban. De ha a tudomány helyett a valóságot szemléljük, akkor már nem ez a helyzet.

  5. Elnézem sokszor a tudományfilozófiai filmeket. Legtöbb esetben a kvantum fizikát Newtoni fizikával akarják szemléltetni. Ami végül jobb mint a semmi de megértés szempontjából nem sokat segít, hiszen a szemléltetés módja a Newtoni fizika törvényei szerint működő dolgokkal való szemléltetés. Csakhogy ezeket a dolgokat,törvényszerűségeket alapból úgy kezeljük mint amire a Newtoni szabályok érvényesek.
    Slepper nagyon jól meglátta hogy a közgazdaság ezt nagyon régen alkalmazza. Mert ugye az üzleti életben sincsenek az árak a kőbe vésve. Az hogy a kőolaj ára, ami az egész Föld gazdaságát befolyásolja, nos az sok véletlenszerű, virtuális „kézfogásból ” alakul ki.A rendezetlen káoszbol jön létre egy szám.

  6. „a tér és az anyag pusztán „zajból” lett teremtve.”

    Hát igen… a hang, „zaj” a tovaterjedő „zavar” a közegben.

    Erre szépen rímel, hogy „kezdetben vala az ige…”

  7. 7. Jól beszélsz! „Egy felbukkanó új elmélet szerint, melynek célja a valóság megfogása, a tér és az anyag pusztán „zajból” lett teremtve.
    Más szóval:”Kezdetben vala az IGE!”
    Érdekesek ezek a „felbukkanó, új ” elméletek…
    Meg hát: Ha van rend, kell lenni rendezetlenségnek is és ha van véletlen akkor…. Stb! És fordítva.

  8. 6: Szerintem a relativitáselméletet úgy lehetne a legjobban szemléltetni, ha valaki létrehozna egy olyan számítógépes játékot, ami úgy van megcsinálva, mintha c=50 km/h lenne, és amúgy mindenben teljesen korrektül követi a relativitáselméletet. Ebben át lehetne érezni, hogy mit is jelentenek az egyenletek.

    De a kvantumra nekem sincs ötletem.

  9. 8. Réd

    „Érdekesek ezek a “felbukkanó, új ” elméletek…”

    Ezek a felbukkanó „új” elméletek régiek, csak kicsit átmaszkírozva.

    A „zaj” nem más, mint a tér (idő, anyag, energia, stb) inhomogenitása, a Teremtés pedig ennek az inhomogenitásnak az értelmezése.

    Kicsit olyan, mint amikor a régi TV-ken elment a szinkron… Ugráló „értelmetlen” csíkok… Pedig ugyanaz az információ jött át, csak szemmel nehezebb kihámozni…

    A Teremtés az az „erő” ami „láthatóvá” teszi az inhomogenitás mintáját, vagy esetleg az a lézer fény, ami előcsalogatja a hologrammot a homályos fényképlemezböl.

    Szóval ez nem annyira akció, mint inkább szemlélet.

  10. Az emberi fül számára a zaj definíciója, az ütemtelen, egymást kuszán követő szólamok, különböző frekvencián, különböző hangerőn történő kibocsátása. Az emberi szem számára ez a „zaj” az amorfitás, ami nem szimmetrikus. De attól még ezeket a jelenségeket le lehet írni matematikai képletekkel, amiknek a fizika törvényei nem mondanak ellent. Az emberi agy mindenben a „harmóniát” keresi de attól még léteznek egyáltalán nem kellemes dolgok……Viszont ezt igyekszik figyelmen kívül hagyni, vagy tesz ellene, illetve megpróbálja nem létezőként kezelni….

Vélemény, hozzászólás?

Az e-mail címet nem tesszük közzé. A kötelező mezőket * karakterrel jelöltük